勉強もバイクも好きだ!

臨床検査と心理学とバイクとクルマのブログです

心理学実験〈 錯視 〉

「 錯覚 」と言うと「 見間違い 」と思われる方がいますが、そうではなく「 実際にそのように感じる 」ことです。 これは見るだけではないあらゆる感覚で起こります。

 

Wikipediaでは

錯覚(さっかく、英:illusion)とは、感覚器に異常がないのにもかかわらず、実際とは異なる知覚を得てしまう現象のことである。対象物に対して誤った感覚や認識を得るのが錯覚であり、存在しない対象物を存在すると見なしてしまう幻覚とは区別される。

 

見ることで錯覚を起こすことを「 錯視 」といいます。

 

錯視(さくし、英: optical illusion)とは、視覚に関する錯覚のことである。俗に「目の錯覚」ともよばれる。生理的錯覚に属するもの、特に幾何学的錯視については多くの種類が知られている。だまし絵とは異なる原理による。

 

心理学実験のレポートを紹介します。

 

今回はミューラーリヤー錯視です。

実験結果によって内容はかなり変わりますので、これをコピーしても無駄です。

あくまでご参考に!

 

f:id:honeyhornet:20190516204146p:image

 

見たことありますよね?

 

矢印の向きによって真ん中の線が長くも短くも見えるものです。

 

大学が作ったのか他で作ってあったのかわかりませんが、この実験だけのためのソフトがあり、パソコン上で操作する内容でした。

 

では、レポートを。

 

問題;

錯視を研究する理由は何であろうか?錯視とはものの見え方が、実際の物理的刺激とは異なるように知覚される現象である。視覚では物理的刺激と主観的知覚判断のずれがあり、それを分析することによって脳神経系の情報処理を明らかにすることができる。錯視はそれを研究することである。

 

目的;

錯視の例は数多く存在するが、その中で今回はミューラー・リヤー錯視の実験を試みた。ミューラー・リヤー錯視とは、実際には斜線の間の線分の長さは同じだが外向きの斜線に挟まれた場合は、内向きの斜線の場合に比べて長く知覚されるというものである。今回の実験では斜線(矢羽)の角度や長さの違いによって、錯視の程度が変わるかどうかを調べた。

 

方法;

 放送大学生23名を対象とし、参加者内2要因計画(角度4水準[15,30,45,60度]×長さ3水準[30,60,90ピクセル]で行った。参加者個別にパソコン画面上にて実験に取り組んだ。

 パソコン画面上に下図1のような錯視図を示し、左右の線分が同じ長さになるように画面下部の>>ボタン(または<<ボタン)を押して斜線(矢羽)を動かし、同じ長さと思った場所で停止、終了ボタンを押した。終了ボタンを押した時点が錯視量として記録され、この行程を各条件にて施行し、計12回行った。線分の長さは全体で430ピクセル、実験で得られた値(錯視量)は動かしたポイントが中点まで何ピクセルか(中点からの距離)を表した。

 

f:id:honeyhornet:20190514224230p:plain

結果; 

 放送大学生23名、参加者内2要因計画で行った結果、矢印の角度と長さによる錯視量は表1(図2)のようになった。

 

f:id:honeyhornet:20190514224324p:plain

f:id:honeyhornet:20190514224510p:plain

 追記;グラフX軸は矢印の角度(度) 

考察;

 今回の実験では錯視量は斜線(矢羽)の角度が大きくなるほど減少し、長さが長くなるほど増大することが分かった。ただし、ウィキペディア等の他の実験データの考察を読んでみると「ミューラー・リヤーの錯視実験では、錯視量は矢羽の角度が大きくなると増加、長さも長くなると増加する」とある。なぜ他の実験と相違するようになったかを自分なりに考えてみると、ミューラー・リヤー錯視の図の矢羽の位置と方向(右に斜線か左に斜線か)が今回の実験と逆になっていたことが分かった。よって、ミューラー・リヤーの錯視実験では「斜線の長さが長くなると錯視量が増大する」のは正しい、「角度が大きくなると錯視量は増大(もしくは減少する)」というのが正しいのではないだろうか。

また、自分だけのことであるが全体に他の人より錯視量が少なかった。これは、ある程度ミューラー・リヤー錯視を理解していたため、あらかじめ矢印を止めて終了する位置を矢羽同士で囲まれる位置に少しずらすことをしていたためだと思う。これによるとこの錯視現象を実験した今回の放送大学生23名が今回の結果を理解したうえでもう一度、ミューラー・リヤー錯視実験を行ったら今回のような結果は得られないのではないだろうか?

 

参考文献

浜口惠治(1995) .ミュラーリヤー錯視と角度錯視の関係 基礎心理学研究 13(2),89-92

ウィキペディア「錯視」ミュラーリヤー錯視(2015年12月9日確認)